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ABSTRACT

A theoretical model was developed for antigen-antibody

interaction in a receptor-carrier based system. Many

models have been developed, both kinetic and equilibrium,

for receptor-to-ligand interaction in the immune

response. The immune response is extremely complex, with

very large numbers of receptor sites on many distinct

cell types in the system. Therefore the system needs to

have many restrictions upon it to make it manageable.

Most models assume the area for interaction is an

infinite sheet (i.e. an endless two dimensional cell

membrane). These models are limited to only discussing

the average number and types of interactions. This model

is receptor-carrier based which counts interactions on a

cell/vesicle surface to allow questions about actions and

conditions per cell to be addressed. The models which

have been addressed are the "sandwich" model which takes

a two-step interaction with a linking ligand and then the

antibody, and the agglutination model which addresses the

inter-cellular binding between two adjacent cells through

a bridging ligand. Results show that the sandwich model

and the agglutination model are less sensitive

immunoassay techniques than the direct binding assay,

although these models are very useful for describing more

complex interactions.
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I. INTRODUCTION

The immune response in humans is a highly organized

and very specific defense system [1]. The immune system

defends the body against foreign molecules, cells, or

viruses, which are called antigens. The human system not

only recognizes non-human cells, but also those from

other individuals, which explains the difficulty in

transplanting organs from one person to another [2].

There are two main types of cells, lymphocytes,

which are involved in the immune response: T-cells

(which mature in the thymus) and B-cells (which mature in

bone marrow). The humoral immune response is produced by

the B-cells and is most effective against pathogenic

(disease causing) cells, viruses and free toxins. The

cell-mediated immune response uses the T-cells and is

effective against larger cells, such as parasites,

cancer, and infected cells.

The cell-mediated response (Figure 1) is more

complex than the humoral immune response (Figure 2).

This is the system which is attacked by the AIDS virus.

In many responses the antigen is picked up by a

macrophage and is presented to a "virgin" T-cell which

initiates a response. The simplest T-cell response would

then produce the cytotoxic T-cell which kills the antigen

bearing cell and then looks for other antigens. The
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other response initiated by the T-cell involves helper

T-cells and suppressor T-cells. The helper cells secrete

lymphokines and interleukins which activate macrophages

and mast cells in the area to ingest the antigen. The

helper cells can also induce local plasma cells to

produce antibodies. The helper cells also tell the

antigen bound T-cells to reproduce. At the same time

suppressor T-cells are doing the opposite of the helper

cells in a dynamic balance to induce an appropriate level

of response. An appropriate response is necessary since

too little response will not rid the body of the antigen

and over response is what causes side effects like

sneezing, coughing and hives.

The B-cell response is more direct and simpler to

understand. The B-cells move freely through the blood

and lymph system of the body. When a B-cell encounters a

specific antigen, it will begin to grow, and divide.

This division produces two types of cells, the memory

cells and the plasma cells. The memory cells allow a

more rapid response to be initiated if the same antigen

were to attack again. The plasma cells actually produce

antibodies which are used to attack the antigen. Figure

3 shows the layout of a typical IgG antibody. There are

more kinds of antibodies than just IgG, but IgG is the

most common, with serum levels up to 12.0 mg/ml. The

antibodies are made up of two light and two heavy protein
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chains. Antibodies are very specitic in their binding

sites (Fab portion), and hence differ in the amino acid

sequencing in that region, but all contain an Fc tail

which is constant in amino acid sequencing from one

antibody molecule to another. This Fc tail is the

portion of the antibody which helps initiate the

complement system. This system is shown in Figure 4.

The chain of proteins forms a pathway to destroy the

antigen, and acts as a catalyst to promote larger

response further along in the process. The system has

two methods of ridding the body of the antigen:

macrophages in the area can be activated to engulf the

antigen or to form a hole in the cell membrane of the

antigen to lyse the cell. The humoral response can also

produce K lyphocytes which mark the antigen and kill it

through an unknown mechanism [2].

The purpose of this paper is to describe in detail

the dezivation of a theoretical model for cellular

interaction. This interaction occurs in many places in

the immune response; for example: antibody to antigen,

macrophage to antigen, and helper T-cell to plasma cell.

Actual modeling of the B-cell response, considering

the huge number of receptor sites on the B-cell [3], on

an antigenic bacteria, or on a virus is unreasonable.

The system needs to be easier to control and have fewer

parameters. A more tractable system would be to model an
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artificial system. The purpose of this paper is to

describe in detail the derivation of a theoretical model

for interactions within the immune system, its

usefulness, and the results of two separate applications

of the theoretical model.

The system which is being modeled uses vesicles in

immunolysis assays, shown in Figure 5 [4]. These assays

use covalently bound antigens on the surface of

phospholipid vesicles [5]. The vesicles can be made with

specific types and numbers of receptor sites. The

vesicles can encapsulate markers like spin-labelled

compounds [6] or fluorescent compounds like

carboxyfluorescein [7]. Carboxyfluorescein does not

fluoresce in high concentrations like that which is

encapsulated in the vesicles, but when the vesicle is

lysed through the complement process or by another means,

the material is diluted and fluoresces. This system can

be modeled and a series of questions can be answered such

as the number of antigenic sites required to activate a

response, and a theoretical limit to detection of antigen

or antibody with this system.

Another more modern and exciting application of such

modeling is for the system recently developed involving

immunoadhesins for AIDS therapy (Figure 6) [8]. It has

been shown that the AIDS virus kills by depleting the

body's T4 lymphocytes (a type of T-cell) and the victim



Immunolysis Assays
monovalent or bivalent ligands or receptors

Filuve 5



12

AIDS Virus Immunoadhesins

virus tied up by CD4

coat protein fwmdoi

kImmunoadheinfl



13

becomes susceptible to infections and neoplasms (new

growth, tumors). The T4 lymphocytes have numerous CD4

protein sites as receptors. The Human Immunodeficiency

Virus (HIV) envelope glycoprotein (gpl20) has been shown

to be strongly attracted to the CD4 protein. Most

therapies are ineffective against the AIDS virus because

its variable receptors keep changing and modifying. The

one common denominator is its attraction to the CD4 site

on the T-cells. After the virus has attached itself to

the T-cell membrane, it is internalized, uncoated, and

alters the cellular DNA. It would seem that an increase

in free CD4 protein in the blood would tie up the coat

protein on the virus (gpl20) and not allow it to attach

to the T-cells. The problem with this approach is that

CD4 only has an effective lifespan of twenty to thirty

minutes in the blood. Researchers have found a way to

develop a special antibody, called an immunoadhesin,

which has CD4 receptor sites and an Fc tail. Experiments

predict a lifespan approaching 21 days, the same as for a

natural IgG. The goal of this program is to tie up the

virus so it cannot attack the T4 cells and allow the

normal immune response, involving the Fc portion of the

immunoadhesin and the complement system, to kill the

virus. This system can be represented by monovalent

receptors (the gpl20 coat protein sites) on the viral

surface and bivalent ligands, the immunoadhesins. This



model can describe the specific actions on the viral

surface.

Many questions still remain about the specific

methods and limiting characteristics of the immune

system. A theoretical model would be useful to answer

some of these questions. Since the antibody to antigen

binding constant is ambiguous [9] and a crucial factor in

explaining cell to cell interactions, it is a central

goal of any theoretical model to find a realistic value

for this constant. Varying this parameter while holding

the other conditions to those of an actual experiment

should allow this constant to be approximated.

Attachment to the cell by first one protein followed by

another is a possibility; modeling this two step process

could show interesting effects. It is also believed that

agglutination of the antigens into clumps helps the

killer cells, macrophages, and the complement system to

work more efficiently [1]. A model of these situations

would help find the system's limits, characteristic

constants, ideal conditions and number of bound

antibodies needed to produce cell lysis.

The models in this paper are receptor-carrier based

(10]. This form of modeling is significant since it

allows questions to be asked concerning the number of

antibodies bound or cross-links per cell/vesicle. Other

models have been proposed (11,12] which are kinetic or
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equilibrium studies of monovalent or multivalent

receptors or ligands. These models assume the surface of

interaction to be infinite so only questions of types or

average number of structures can be asked. The counting

done by this model keeps track of structures on the

vesicle surface. It is assumed that the initial antibody

attachment to the vesicles is caused by a receptor-ligand

interaction. This initial attachment rate is considered

to be independent of number of sites occupied if there

are sites remaining (steric considerations are not taken

into account). The subsequent attachment of multivalent

antibodies (in the agglutination model, the bivalent

receptor model, and the bivalent ligand sandwich model)

do take steric effects into account. Finally it is

assumed that the receptor sites are able to migrate

freely [13] to allow adequate mixing for the equilibrium

equations to be relevant.
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II. GENERIC MODEL DERIVATION

The models are defined by a system of conservation

equations. The derivations are not intuitive, so an

example will be provided. The simplest case is one of

monovalent receptors on the cell and monovalent ligands

[14]. This system is represented in Figure 7.

This system has a vesicle, or cell, covered by n

monovalent antigenic receptors. The binding ligands are

monovalent, like Fab fragments. The system has a

degeneracy, (i.e., number of arrangements) which is

defined as di. Degeneracy is the number of equivalent

arrangements of bound ligands.

r n -j
di = n!/[i!(n-i)!] = L1J (i)

This is derived by taking the number of possible

arrangements of receptors (n!) and dividing by the number

of arrangements of the different sites which are on the

cell, including (i!) the number of identical sites which

are bound and (n-i)! unbound sites. The ligands need to

be specific for the receptor sites and are governed by the

binding and dissociative rate constants, k, and k_1.

These constants are related to K, the equilibrium binding

constant, by

K = kl/k_1 (2)
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The Law of Mass Action representing the i th antibody

binding is represented by

K
Vi I + a u V i ,  (3)

which can be represented by the following arrangement where the

' represents one of the specific arrangements among the total

di, possible arrangements of Vi , and "a" represents the free

antibody concentration:

Vi , = (aK)ViI ,  (4)

The total concentration of Vi can be defined as

V i , = Vi/di (5)

Repeating equation (4) i times gives the general equation

Vi = di(aK)iVo (6)

where Vo is the concentration of cells without any

antibodies bound.

The total number of vesicles and antibodies in the

system cannot change. This allows conservation equations

to be found. The conservation equations for the
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system can be derived as

n
V0 = I di(aK)iV (7)

i=o

n
Ab= I idi(aK)iVo  (8)

i=O

where V0 is the initial concentration of vesicles and Ab0

is the initial concentration of antibodies.

The mathematical identity of

(n) xi = (l+x)n (9)

i=0 1

allows equation 7 to be reduced to

V0 = Vo(l+aK)n (10)

and the derivative of equation 9 allows equation 8 to be

reduced to

Ab ° = a + nV~aK/(l+aK) (11)
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A. General Derivation Summary

This is the format which will be used to derive all

future models:

1. Identify possible structures and parameters

governing receptor to ligand binding.

2. Calculate degeneracy through possible

arrangements, including unbound sites.

3. Strip (stepwise) possible arrangements to Vo

(entirely empty) arrangement.

4. Derive conservation equations for vesicles and

antibodies.

5. Address specific questions.

III. SANDWICH MODEL

The first model which will be discussed in depth is

the "sandwich" model [4]. This model is shown in Figure

8. This model is different from the monovalent receptor/

monovalent ligand model by the ligand being bivalent, with

one end specific to the receptors on the vesicle, and the

other specific to the monvalent antibody. Now the vesicle

receptors can have three possible arrangements: empty,

with the bivalent "link" attached (f), and having the link

attached to an antibody and the receptor site (s).
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The degeneracy for this model is derived as in the

monovalent model and it results in

df,s = n!/[f!s!(n-f-s)!] (12)

The Law of Mass Action for the model is represented by

K
Vf, s  Vf+l,slI,  (13)

where K is represented by Equation 2 for the s(second)

step. By repeating this equation s times the general

equation for the concentration with f links and 0

sandwiches can be shown to be

Vf,s/df,s = (Ksa)SVf+s,o/df+s,o (14)

where a is the free antibody concentration and Ks is the

equilibrium constant for that reaction. The Law of Mass

Action equation

Vf+s,o/df+s,o = (KfI)(Ksa)SVf+sl,o/df+s-l,o

(15)

can be repeated f+s times to yield the general equation

Vf 5 = dfIs(KfA )f+S(Ksa)SVo, (16)
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where A is the free link concentration, and V,, is the

concentration of vesicles without any links or sandwiches

attached.

The conservation equations can be derived to yield

n n-f
VO = X Z df,s(Kfl)f+s(Ksa)SVo, O  (17)

f=0 s=O

n n-f
AbO = a + Ksal + I I (s)dfs(Kfl)f+S(Ksa)sVoc

f=0 s=O
(18)

n n-f
LO = I + KsaA + I Z: (f+s)df,s(Kfl)f+S(Ksa)SVo, o

f=0 s=O
(19)

which can be simplified with Equation 9 and its derivative to

the formulas below

VO = (l+xy+y)nVOO  (20)

Ab° = a + Ksal + nxy(+xy)n-l(l+y+xy)n-i

(l+y+xy-y/(l+xy) )Voo

(21)

LO  I + Ksal + ny(l+xy)n-l(l+y+xy)n- I

[l+x ( l+2y+xy-y/(l+xy) ] Vo,o

(22)

where x = Ksa

y = KfI
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A. Sandwich Model Results

The sandwich model is best used to represent possible

applications in immunolysis assays [4]. A vesicle can be

made with antibody receptors, antigenic links, and

antibody ligands. This would provide more flexibility in

the types of systems to be modelled. In Figures 9 and

10 the fraction of vesicles with at least one

receptor/link/ligand sandwich is shown with typical values

for the binding constants for both binding steps, Kf and

Ks. The value of 8.3x10-9 M for the constants LO and Ab°

was chosen to allow for comparison with previous models.

In Waite and Chang's paper on the monvalent receptor and

monovalent ligand [14], results were shown for varying

values of n (number of receptor sites) versus fraction of

vesicles with one or more antibodies bound to the

antigenic receptors (Figure 11). At values of n = 100 and

Ab ° = 8.3xi0 - 9 M, approximately seven percent of the

vesicles had one or more ligands bound. In the sandwich

model, with the link concentration held at the value of

8.3xl0- 9 M it takes relatively large concentrations of

Ab° , about 8.8x10-6 M, to reach the same seven percent.

The sandwich model also allows the antibody concentration

to be held constant and the link concentration to be

varied. In this context the link concentration would need

to be about 7.9x10-5 M, with the [Ab° ] = 8.3x10-9 M, to
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reach seven percent. This shows that the sandwich model

is less sensitive than the direct binding model. This

result is to be expected since this model requires a two

step process to be completed versus a one step process.

The plots also show a smooth increase in the number of

sites "sandwiched" up to a maximum. On the plot which

varies Ab0 , the maximum is one. This plot will not drop

back off, as does the monovalent receptor, bivalent ligand

model, shown in Figure 15 [15], since there isn't any

competition between the links and the ligands to get to

the receptor cites. There is no competition since the

links are specific to the receptor on one end and the

ligand on the other. The plot of varying LO

concentrations reaches a maximum at approximately eight

percent. This is logical since it was shown that the

sandwiches form at higher concentrations of Ab° on the

first plot, then the low concentration of the Ab° in this

plot lowers the possible number of sandwiches. The number

of links attached does not affect the number of sandwiches

after a point if there are not enough ligands present to

form the second step of the process.

The values of 105 for the binding constants are

typical [16] but can vary from system to system. This

system is a simple two step process. Changing one binding

constant by some orders of magnitude, while holding the

second constant, then changing the second constant
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while holding the first to its original value keeps the

results constant, as is shown in Figure 12. It is not

pictured but is logical that an increase in a single

binding constant or increasing both would increase the

relative response.

IV. AGGLUTINATION MODEL

Another model which can be .sed to represent the

B-cell response is the monovalent receptor, multivalent

antibody, with possibility of inter-linking between

vesicles, called agglutination [4). This is diagrammed in

Figure 13. The antibody can be either IgG or IgM. The

IgG antibody has two binding sites, while the IgM has ten

binding sites, (I = 2 for IgG, X = 10 for IgM, where X is

the number of binding sites on the antibody) but for

simplicity in this model it will be assumed that only two

sites will be available for binding at one time. Due to

steric considerations of the planar shape of the IgM, this

approximation is not too severe.

From Waite and Chang's paper on multivalency effects

in the direct binding model the final equilibrium equation

for a single vesicle with monovalent receptors and

multivalent ligands is
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Vi' j = di,j(Kl / -)j (P K l a) i + j Vo, o  (23)

where

di' j = n!/[i!j!2J(n-i-2j)!] (24)

and Vo0 o is the concentration of vesicles without any

antibodies bound, either as danglers (i or i') or

two-footers(j or j'), K1 is the intrinsic association

constant, K2 is the intra-cross-linking constant, and a is

the geometric factor which takes into account the local

concentration enhancement of forming a two-footer from a

dangler.

Now the concentration of the agglutinated vesicles can

be derived from this information, with some modifications.

For mathematical simplicity, the number of vesicles which

can form inter-cellular links will be limited to two

cells. Therefore the degeneracy of the agglutinated

vesicles can be shown to be the degeneracy of a single

vesicle squared with the number of bridges (k) taken into

account.

dagglut = n!n!/[i!j!2J(n-i-2j)!k!i'!j'!2J'(n-i'-2j')!]

(25)

Ki is the binding constant for the initial bridge, Kz

is the binding constant for the bridges following the

initial bridge, and P is the geometric factor which takes

the steric effects and local concentraticn effects
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for bridging into account. Using the Law of Mass Action

as has been shown before, the equilibrium equation for the

concentration of two agglutinated vesicles (C2 ) can be

given by

C2 = dagglut(K2/a)j(Kla)i+JVo, o(K 2 /Q) j"(Kla)i'+j"Vo,o

Ki (K2/0) k-i

(26)

which can be simplified to

C 2 = dagglut(K2/a)J+j'(,Kla) i+i'+j+j'V2o, oKi(K 2/#)k-1

(27)

Equations 23 and 27 can be combined to give the conservation

equation, which has been abbreviated.

(n) n (n-f) (n-f)
V= X Vi'j + 2 X Z I'IX C2  (28)

i jk=1 i j i'j'

Combining similar terms and substituting allow the

simplified equations to be found.

VO = G(n)Vo,O + H(n)V 2o,co (29)

where

n/24G(n) = S(i)(x i + xn-i)/(l+6n/2,i) (30)

i=0
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The n/24 means the term will be truncated, and the

Kronecker delta function Si,j = 1 for i = j and Si,j 0

for ioj.

i
S(i) = I n!y!/[(i-j)!j!2J(n-i-j)!] (31)

j=0

and

n
H(n) = ( {n!n!/[k!(n-k)!(n-k)!])xkzk-lKi2G(n-k)

k=l
(32)

X = aK1

y = K2/a

z = Kz/6

The antibody conservation equation can be described in

similar terms

AbO = a + J(n)Vo,o + W(n) V 2
0
,
0  (33)

J(n) and W(n) are defined as

n/24
J(n) = I (ixi + (n-i)xn-i)S(i)/(l + 6 n/2,i)

i=0
(34)

n
W(n) = Z (n!n!/k!(n-k)!(n-k)!)xkzk-lKi

k=1

[kG2 (n-k) + 2G(n-k)J(n-k)]

(35)

and x, y, and z are defined as before.
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AGGLUTINATION MODEL RESULTS

The agglutination model is useful for modeling many

systems. It can be used to model the immunolysis assays

with monovalent (Fab fragment) receptors and IgG antibody

or bivalent antigen ligands or bridging between the AIDS

viruses in immunoadhesin experiments [8]. Figure 14 shows

the fraction agglutinated of the system with realistic

binding constants for the formation of two-footers (j) and

danglers (i) while the binding constant for the formation

of the initial bridge is varied. This is done since no

realistic value for this binding constant is known. The

values of Ki on this plot vary from values of 10-11 to

103 . A desired value would be to find the antibody

concentration where the agglutination would be maximized.

It is not intuitive that the maximum be consistent for all

values of Ki, but as the plot shows, no matter what the

probability of forming the first bridge is, the maximum

occurs at the same concentration, about 5.0x10 -6 M.

From Waite and Chang's paper on multivalency effects

(15] on the direct binding model it was shown that the

maximum value for two-footers is about 5.0x10 -6 M (shown

in Figure 15). This maximum is the same for fraction

agglutinated, which implies that the two are related. In

low antibody concentration very few danglers are formed

since the local concentration of receptors is so high that
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most move directly to two-footers. A bridge cannot be

formed if both sites on the antibody are occupied,

therefor it requires danglers to be present. After the

maximum concentration of two footers is reached, the

relative number of two-footers per vesicle drop due to

competition with danglers for receptor sites. These

danglers form into bridges. The fraction agglutinated

drops off when the antibody concentration gets too high.

This is caused by all of the vesicle's receptors being

tied up, until finally there are no open receptors on

either vesicle, and therefore no bridging.

Figure 16 shows the effects of number of sites per

vesicle (n) upon the fraction agglutinated. This curve is

relevant since the computer time used increases rapidly

with increasing n and realistic numbers of receptor sites

would take too long to calculate, if possible. If the

effects were to form a smooth curve the effects could be

extrapolated to a realistic number of receptors per

vesicle.

This plot uses an antibody concentration of 10-12 M,

to set a low value to try and approximate the threshold

detection value for different methods. The light

scattering techniques in Cohen and Benedek's papers

(17,18) rely on agglutination for detection. Their papers

describe laser light and quasi-elastic light scattering

from the early stages of agglutination for low level
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detection of ligands. The plot could also be related to

the immunolysis experiment which relies on the

self-quenching fluorescent compound carboxyfluorescein,

and the lowest level of light detectable by the light

meter to show a response. This diagram used an arbitrary

fraction of agglutination of 2x10- 9, which relates to

8.4x10-2 2 M of the vesicles to be lysed, to estimate the

detection threshold. At this lower limit of agglutination

detection, the vesicles would need at least 675 receptor

sites to detect an antibody concentration of 10-12 M.

V. NEW DERIVATIONS

Two more models have been derived, but have not been

programmed. These models are extensions of the two which

have been presented above.

A. Antibody Multivalency Effects on the Sandwich Model

The sandwich model can be made more realistic by

taking into account antibody multivalency. As before, the

IgG will be represented ideally and the IgM will be

limited to an effective binding number of two to limit the

mathematical complexity.
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This model again uses the vesicle with n receptor

sites which can be involved first with the linking ligand,

then the antibody. The degeneracy of this system is

df,s,t = n!/[f!s!t!2t(n-f-s-2t)!] (36)

Figure 17 shows this model where f receptor sites have

a link attached, s with an antibody bound to a link

singularly, in a similar manner as a dangler, and t with

links bound by the same antibody.

The Law of Mass Action equations necessary to derive

the equilibrium equations are

I

Kt t times

V'f,s,t I V'f,S+l,t_1 . Vf,s+t,O (37)

Ks  s+t

V'f,s+t,o " V'f+l,S.l,0 + a' 260 Vf+s+t,o,o + a

times

(38)

Kf f+s+t

VIf+s+t,o,o 0 V'f+s+t-loo + ' = Vooo + I

times

(39)
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These equations taken to the limits shown above yield

the equilibrium equation

Vf,s,t = df,s,t(Kt/a)t(Ksa),)s+t(Kf)f+s+tVo,o,o

(40)

A is the number of receptor sites on each antibody and a

is the geometric factor which takes local concentration

effects into account.

Defining x = KfI, y = Ksa , and z = Kt/a the

following conservation equations can be derived.

n-f-s/2 n-f n
V° = I X X df,stxf+S+tyS+tztV0 ,0 ,0

t=0 s=0 f=O
(41)

n-f-s/2 n-f n
Ab° = I7 7. I X df s,t(s+t)xf+S+tyS+tztVo

t=O s=O f=O

(42)

n-f-s/2 n-f n
LO = 7. I I df,s,t(f+s+2t)xf+S+tyS+tztVo,,0

t=0 s=0 f=O

(43)

Using Equation 9 and its derivative the conservation

equations can be simplified into



44

VO = (l+x)n(l+xy)n-fH(t) (44)

Ab° = a + 2KsaA + K2sa 2 1 +

(n-f) xy(l+x) n (l+xy) n-f-H(t) Vo,o,o

(l+x) n (l+xy) n-ftH (t) Vo, 0 , 0

(45)

Lo = + 2Ksal + K2 sa 2 1 + nx(l+x)n-l(l+x)n-fH(t)Vo,o,o

+ (l+x)n(n-f)xy(l+xy)n-f-lH(t)V, o

+ (l+x)n(l+xy)n-f2tH(t) Vo,o,o

(46)

where

n-f-s/2
H(t) = (n-f-s) !/[t!2t(n-f-s-2t)! ] (xyz)t

t=o
(47)

The results from this model would be expected to be

related to the monovalent ligand sandwich model much in

the same manner as Waite and Chang's papers on monovalent

direct binding and multivalency effects are related

(14,15]. It would be expected that these effects include

geometric factors for local concentration of receptors

after one end of the antibody is attached. It is also

logical that the number of sandwiches with both sites on
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the ligand being attached having a peak when compared to

initial antibody concentration. This would be caused by

the competition of the "two-footed sandwiches" with the

danglers for receptor sites with links attached.

B. Bivalent Receptor/Bivalent Ligand Model

The bivalent receptor, bivalent ligand model is the

most complex model presented. The vesicle surface is

covered with n surface immunoglobulins (sIg) which each

have two receptor cites. This system is shown in Figure

9.

Theoretically a B-cell has antibody chains from

surface Ig to sIg which are up to twenty receptors long.

These chains can form loops upon themselves, long

continuous chains, or large clusters. The number of

possible arrangements is mathematically intractable. To

make this model's derivation somewhat straightforward this

model limits the chaining effects to two sIg. The

possible arrangements of two receptor cites is also shown

on Figure 9.

The degeneracy of this system need to take this 2
n

factor into account, but this falls out since all possible

combinations of antibiotic attachment and empties also

have this 2x factor.
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da.g = n!/[a!b!c!d!e!f!g!(n-a-b-c-2d-2e-2f-2g)!]

(48)

The Law of Mass action equations are shown

diagrammatically on Figures 19a and 19b.

The breakdown of each structure is not always a

singular path, but this system falls under the same rules

as a state function, thus any one pathway may be selected

for each combination. The one pathway chosen must be

consistent for all the Mass Action equations. The

equilibrium equation for any specific combination of

antibodies is given by

Vag = da-g(Kaab)a+b+c+d+2e+2f+2g(Kbab)b(Kc)C(Kd)
d

(Ke)e+f+g(Kf) f(Kgab)g

(49)

This equation uses ab to represent free antibody

concentration to eliminate confusion between it and

receptor-ligand combination a. The binding constants Kb

through Kg all have geometric local concentration effects

tied into their values.
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The conservation equation for the vesicles is

0 * " n-a n
VO = Z I X X da.g (Kaab)a(KaKbab2)b

g=0 f=0 e=0 d=0 c=0 b=0 a=0

(KaKcab) c (KaKdab) d (K2 aKeab2 ) e (K2 aKeKfab 2 ) f (K2 aKeKgab3) g

= n-a-b
w = n-a-b-c/2

= n-a-b-c-2d/2
= - n-a-b-c-2d-2e/2
= n-a-b-c-2d-2e-2f/2

(50)

Models have been derived with similar arrangements

[21] of bivalent ligands and bivalent receptors, but

again, this model is receptor-carrier based [10). This

will allow questions about linked receptors per vesicle to

be answered.
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VI. CONCLUSION

The purpose of this paper was to describe in

detail the derivation of a theoretical model for

antigen-antibody interaction and how that

interaction relates to the immune response,

immunoassay methods of detection, and the use of

immunoadhesins for AIDS therapy. These models were

receptor carrier based which allows the questions

of number of interactions per vesicle or cell to be

addressed. The results may be used to discover

parameters for these systems. With help from

experimental immunologists to relate real known

binding constants and concentrations, boundary

limits and interactions on the cell/vesicle surface

may be described. These models can be used as

building blocks for describing more complex

systems.
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APPENDIX 1

Computer programming of these equations does

pose some interesting problems. The precision

for the VAX is normally e-88 and double precision

is e- 300 . One of the problems occurs when adding

a series of numbers of greatly different orders

of magnitude. Even when working in natural

logarithims, the numbers must be changed back to

their non logarithmic form to add them. This

problem can be avoided by using a series of steps

to make the numbers more manageble.

Desired quantity ln (xI + x2 + x3 )

(a) Find: in xl, In x2 , ln x3

(b) Find largest quantity from (a)

(c) Subtract (b) from all values in (a)

(d) Take the exponential of values in (c)

(e) Sum numbers in d (magnitudes close)

(f) Take ln (e)

(g) Add ln (f) + ln (b)

(h) Equals ln (x1 + x2 + x3 )

i.e. Desired 104 + 10- 1 (Logl0 will be used)

(a) log 104 = 4, log 10 - 1 = -1

(b) largest = 4

(c) 0,-5

(d) 100 = 1, 10- 5 = .00001
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(e) 1.00001

(f) log 1.00001 = 4.3x10- 6

(g) 4 + 4.3X10- 6 = 4.0000043

(h) 10 (g) = 10000.1 as expected

The other complication arises when the

factorial for large numbers is needed. This

arises in all the degeneracy calculations since

n! is a very large number. This can be

approximated using Stirling's approximation which

says:

ln(n!) = (n+1-1/2)ln(n+l) - (n+1) +

1/21n(2r) +

1/12(n+1) - 1/360(n+1)3 + 1/1260(n+1)5 ...

This approximationgives very exact answers

without overloadi- +he computer. Most numbers

would overflow normal precision since 100! =

9.3x10157 , and many would averflow double

precision, therefore Stirling's approximation is

used whenever n is greater than seven.
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Appendix 2

This computer program is used to develop the plots and

results for the sandwich model. The loops fill a two-

dimensional array for all Vf, s combinations. This array is

forced into a one-dimensional array where the summation of

the fraction can be found. The data is then passed to data

files to be interpreted.
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ccc PROGRAM: SAND.FOR

c To run type:

c fortran/g-floating sand.f or

c link sand

c run sand

C

implicit real*8 (a-h,o-z)

dimension Vfs(200,200)

dimension temp(40000)

dimension temp2 (40000)

akf=l.d5

aks=l.d5

ictr=l

nsand=l

sum=O

Vo=dlog(4.2d-13)

do 5 n=100,101,10

do 10 ih=900,901,2

a=8.3*10.**(-ih/l00.)

do 15 im=900,300,-50

al=lO.**(-im/lO0.)

x = aks*a

y = akf*al

w = aks*a*al

Voo = Vo-n*dlvog(1+x*y+y)

do 20 if = 0,n

do 25 is = 0,n-if

Dfs=fact (n) -fact (if) -fact (is) -fact (n-is-if)

Vfs(if+l,is+1)=Dfs+(if+is)*dlog(y)+is*dlog(x)+Voo

25 continue

20 continue

nn=n-1

yy=l+x*y

aLo=Voo+d log (n*y) +nn*dlog (yy)
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alLo=Voo+dlog (n*x*y) +nn*dlog (y+yy)

a2Lo:=dexp (aLo) +al+w+dexp (alLo)

goto 11

Abo=dlog (n*x*y) +nn*dlog (y+yy) +dlog ( -y/yy) +Voo
Abo2=a+w+dexp (Abo)

11. continue

ictr=1

do 100 ia=0n

do 95 ib=0,n-ia

if (ib.lt.nsand) goto 95

Temp (ictr) =Vfs (ia+1, ib+1)

ictr=ictr+1

95 continue

100 continue

do 110 ic=1,(ictr-1)

big=temp (1)

if (temp(ic).gt.big) big=temp(ic)

110 continue

sum= 0

do 120 id=1,(ictr-1)

temp2(id) = temp(id) -big

temp2 (id) =dexp(temp2 (id))

sum=temp2 (id) +sum

120 continue

sum=sum*dexp (big)

write(25,999) n

999 format(' 1,1 current n value is: ',i5)

write(25,1000) Abo2

1000 format(' ',1 computed value of Abo is: ',d16.8)

write(25,1001) a2Lo

1001 format(' ''computed value of Lo is: ',d16.9)

fraction=sum/dexp (vo)

write(25, 1002) nsand, fraction

1002 format(' ' fraction with
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1',i5,'or more sandwiches is: ',d16.8)

write(20,1003) dloglO(a2Lo) ,fraction,dloglO(fraction)

write(21,1004) n,fraction,dloglQ(fraction)

1003 format(3e16.8)

1004 format(i5,2e16.8)

15 continue

10 continue

5 continue

stop

end

real*8 function fact(n)

implicit real*8 (a-h,o-z)

tl=.5*dlog(2.dO*3. 14159265358979d0)

if (n.gt.6) goto 30

if (n.eq.0) fact=0.0

if (n.eq.1) fact=0.0

if (n.eq.2) fact=dlog(2.dO)

if (n.eq.3) fact=dlog(6.dO)

if (n.eq.4) fact=dlog(24.dO)

if (n.eq.5) fact=dlog(120.dO)

if (n.eq.6) fact=dlog(720.dO)

return

30 z=n+1

1*z**3)+1./ (1260.*

lz**5)-1. /(1680. *z**7)
return

end
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Appendix 3

This program is more complex and layered to solve the

agglutination model. The functions S(i), G(n) and others

which are used more than once have their own arrays to make

the calculations easier.
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ccc PROGRAM: BEST.FOR

c to run, type

c fortran/gfloating [waite.inter]best.for

c link best

c run best

c type forOOO.dat

c

c

c Philosophy of program:
c sums of large numbers are handled with the

c logarithmic, reduce by biggest, exp, sum,

c log, increase by biggest method.

c the quadratic formula is implemented with similar

c consideration given to large/small numbers in

c function f

c Sterling's formula is implemented in function fact

c

c

c The summary of variables possessing the various functions is aE

c follows:

c (nsize)

c s(nsize+l,k+l) is the s(i)

c g(nsize+l) is the g(nsize)

c j(nsize+l) is the j(nsize)

c hn is the h(n)

c wn is the w(n)

c pn is involved with the m or more bridges calculation

c

c

c

implicit real*8 (a-h,o-z)

dimension tl(300),bigest(300),suml(300),s(300,300)

dimension zz(300,300),zzn(300,300),sum(300),tut(300)

dimension uu(300,300),uun(300,300),sumi- 300),sl(300)
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dimension s2(300) ,s3(300)

zero=0. 0

mbrdg=3

do 987 qw=-5,7,l

akl=l0.**(qw)

ak2=l.d5

aki=1.d3

akz=l.d5

val=2. 0

alpha=7.d5

beta=7.d5

y=ak2 /alpha

z=akz /beta

VO=4 .2d-13

write(0,2323)

2323 format(' ',' k1 k2 ki kz val')

write(0, 1212) akl,ak2,aki,akz,val

1212 format(' ',5d16.8)

write(0, 3434)

3434 format(' ',' alpha beta Vol)

write(0,1212) alpha, beta,vo

do 7860 n=100,101,10

write(0,8642)

8642 formnat(' 1)

write(0,4545) n

4545 format(' ','current value for n is :',i6)

do 5 nsize=O,n

do 15 k=O,nsize/2

do 25 j=o,k

ti (j +1) =fact (nsize) -fact (k-j)
1-fact(j)-fact(nsize-k-j)+j*dlog(y/2.)

*25 continue

bigest (k+l) =tl (1)

do 35 j=0,k
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if(tl(j+1).gt.bigest(k+l)) bigest(k+1)=tl(j+l)

35 continue

sumi (k+l) =0.0

do 45 j=O,k

ti (j+l) =tl (j+1) -bigest (k+1)

if(tl(j+1).lt.-300.) goto 102

tl(j+1)=dexp(tl(j+1))

goto 101

102 tl(j+1)=0.0

101 suml(k+1)=suml(k+1)+tl(j+1)

45 continue

s(nsize+l,k+1)=dlog(suml(k+l) )+bigest(k+1)

15 continue

5 continue

do 666 i=800,300,-5

a=10. ** (-i/lao.)

write(0,8642)

write(O,5676) a

5676 format(' ',' value for free antibody a is :',d16.8)

x=a*val*akl

do 135 nsize=0,n

do 145 k=0,nsize/2

tll=k*dlog (x)

t2=(nsize-k) *dlog(x)

if(k.eq.O) t3=-10000.

if(k.eq.0) goto 17

ak=k

t3=tll+dlog (ak)

17 if(nsize.eq.k) t4=-10000.

if(nsize.eq.k) goto 18

anmk=nsize-k

t4=t2+dlog (anmk)

18 if((nsize/2)*2.eq.nsize) goto 3

goto 333
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3 if(k.eq. (nsize/2)) tll=tll-dlog(2.dO)

if(k.eq. (nsize/2)) t2=t2-dlog(2.dO)

if(k.eq. (nsize/2)) t3=t3-dlog(2.dO)

if(k.eq. (nsize/2)) t4=t4-dlog(2.dO)

333 zz(nsize+1,k+1)=s(nsize+1,k+1)+tll

zzn(nsize+1,k+1)=s(nsize+1,k+1) +t2

uu (nsize+1, k+1)=s (nsize+1, k+1) +t3

uun(nsize+1,k+1)=s(nsize+1,k+1) + t4

145 continue

big=zz (nsize+1, 1)

bigu=uu(nsize+1, 1)

do 56 k=O,nsize/2

if(zz(nsize+i,k+1) .gt.big) big=zz(nsize+1,k+1)

if(zzn(nsize+1,k+1) .gt.big) big=zzn(nsize+l,k±1)

if(uu(nsize+1,k+1) .gt.bigu) bigu=uu(nsize+1,k+1)

if(uun(nsize+1,k+1) .gt.bigu) bigu=uun(nsize+1,k+1)

56 continue

do 67 k=O,nsize/2

zz (nsize+l,k+1)=zz (nsize+1,k+1) -big

zzn(nsize+1,k+1)=zzn(nsize+l,k+1) -big

uu(nsize+1,k+1)=uu(nsize+1,k+1) -bigu

uun(nsize+1,k+1)=uun(nsize+1,k+1) -bigu

67 continue

sum(nsize+l) =0.0

sumu (rsize+1) =0.0

do 78 k=0,nsize/2

if(zz(nsize+1,k+1).lt.-300.) goto 578

zz(nsize+1,k+1)=dexp(zz(nsize+1,k+1))

goto 478

578 zz(nsize+1,k+1)=0.0

478 continue

if(zzn(nsize+1,k+1).lt.-300.) goto 579

zzn niz~ ,k+1) =dexp (zzn (nsize+1, k+1))

goto 479
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479 continue

if(uu(nsize+1,k+1).lt.-300.) goto 679

uu(nsize+1,k+1)=dexp(uu(isize+1,k+1))

goto 680

679 uu(nsize+l,k+1)=0.O

680 continue

if(uun(nsize+1,k+l).lt.-300.) goto 779

uun(nsize+1,k+1)=dexp(uun(nsize+1,k+1))

goto 780

779 uun(nsize+l,k+1)=0.0

780 continue

s um(nsize+1)=sum(nsize+1)+zz (nsize+1,k+1)

1+zzn (nsize+l, k+1)

sumu (nsize+1) =sumu (nsize+1) +uu (nsize+1, k+1)

1+uun (nsize+1, k+1)

78 continue

sum(nsize+1)=dlog(sum(nsize+1) )+big

sumu(nsize+1)=dlog(sumu(nsize+l) )+bigu

135 continue

do 601 k=1,n

sl(k)=2.*fact(n)+k*diog(x)+(k-1)*dlog(z)+dlog(aki)-fact(k)-

1 2.*fact(n-k)

ak=k

s2 (k)=sl(k)+dlog(ak)+2.*sum(n-k+1)

s3(k)=sl(k)+dlog(2.dO)+sum(n-k+l)+sumu(n-k+1)

si (k) =sl (k) +dlog(2 .dO) +2. *sum(n-k+1)

601 continue

bl=sl(l)

b2=s2 (1)

do 602 k=1,n

if(sl(k) .gt.bl) bl=sl(k)

if(s2(k) .gt.b2) b2=s2(k)

if(s3(k) .gt.b2) b2=s3(k)

602 continue
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sl (k) =sl (k) -bl

s2 (k) =s2 (k) -b2

s3 (k) =3 (k) -b2

603 continue

hn=0.OdO

wn=O.OdO

pn=0. OdO

do 604 k=1,n

if(sl(k) .lt.-300.)goto 720

si(k)=dexp(sl(k))

goto 721

720 sl(k)0O.0

721 continue

if(s2(k) .lt.-300.)goto 722

s 2 (k) =dexp (s 2 (k))

goto 723

722 s2(k)=0.0

723 continue

if(s3(k).lt.-300.) goto 724

s 3 (k) =dexp (s3 (k))

goto 725

724 s3(k)0O.0

725 continue

hn=hn+sl (I)

wn=wn+s2 (I) +s3 (I)

if(k.lt.mbrdg) pn=pn+sl(k)

604 continue

pn=hn-pn

hn=dlog (hn) +bl

wn=dlog (wn) + b2

pn=dlog (pn) +bl

bbb=sum (n+1)

ccc=dlog (vo)

aaa=hn
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bog=aaa

if (bbb.gt.bog) bog=bbb

if (ccc. gt .bog) bog=ccc

aaaa=aaa-bog

bbbb=bbb-bog

cccc=ccc-bog

vOO=f (aaaa, bbbb, cccc)

8889 if(vOO.gt.-300.)write(O,1111) dexp(vQO)

if(vOO.le.-300.)write(O,1111) zero

terml=dlog (a)

term2=sumu (n+1) +voo

term3=wn+2 .*vOO

big=terml

if (term2 .gt.big) big=term2

if (term3 .gt.big) big=term3

terml=terml-big

term2=term2 -big

teriu3=term3 -big

stum=O. 0

if(terml.lt.-300.O)goto 851

terml=dexp (termi)

goto 852

851 terml=O.O

852 continue

if(term2.lt.-300.) goto 853

term2=dexp (term2)

goto 854

853 term2=0.O

854 continue

if(term3.lt.-300.) goto 855

term3=dexp (term3)

goto 856

855 term3=0.O

856 continue
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856 continue

abo=terml+term2+tern3

abo=dlog (abo) +big

if(abo.gt.-300.) write(0,1113) dexp(abo)

if(abo.le.-300.) write(0,1113) zero

write(O,1114) dloglO(dexp(abo))

guppy=hn+2.*vOO-ccc

if(guppy.gt.-300.) write(0,222) dexp(guppy)

if(guppy.le.-300.) write(0,222) zero

patch=pn+2 .*vOO-ccc

if(patch.gt.-300.) write(O,242) mbrdg,dexp(patch)

if(patch.le.-300.) write(0,242) mbrdg,zero

write(l,111) dloglO(dexp(abo)) ,dexp(guppy)

write(2,lll) dexp(abo) ,dexp(guppy)

write(3,111) dloglO(dexp(abo)) ,dexp(patch)

write(4,1121) n,dexp(guppy)

242 format(' ',' fract. with ',i5,' or more

ibridges : ,d16.8)

111 format(' ',3e16.8)

1121 format(' ',i5,3e16.8)

1111 format(' '' computed value of vOO is: ',d16.8)

1113 format(' '' computed value of abo is: ',d16.8)

1114 format(' '' computed value of log(abo) is: ',d16.8)

222 format(' '' f(agglut)= ',d16.8)

666 continue

7860 continue

987 continue

stop

end

real*8 function fact(n)

implicit real*8 (a-h,o-z)

tl=.5*dlog(2 .dO*3 .14l59265358979d0)

if(n.gt.6) goto 10

if(n.eq.0) fact=0.0
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if(n.eq.1) fact=O.O

if(n.eq.2) fact=dlog(2.do)

if(n.eg.3) fact=dlog(6.dO)

if(n.eq.4) fact=dlog(24.dO)

if(n.eq.5) fact~dlog(120.d0)

if(n.eq.6) fact=dlog(720.dO)

return

10 z=n+1

1(360. *z*z*z) +1./(1260. *

1z*z*z*z*z) -1./(1680.*z*z*z*z*z*z*z)

return

end

real*8 function f(a,b,c)

implicit real*8 (a-h,o-z)

x=dlog (4 .dO) +a+c-2 .*

111 format(' 1,3d16.8)

if(x.gt.0.0) goto 15

if(x.lt.-5.0)goto 5

x=dexp (x)1 + 1.

x=dsqrt (x) *dexp (b) -dexp (b)

f=dlog (x) -diog(2 .dO) -a

return

5 tl=dexp (a+c-b-b)

f=c-b-tl+2 . *tl*tlJ...*tl*tl*tl+14. *tl**4-42.*l*

return

15 y=2*b-a-c

if(y.lt.-300.)goto 35

y=dexp (y)

goto 36

35 y=0.0
36 continue

z=(-dsqrt(y)+dsqrt(y+4.dO) )/2.

f=dlog(z)+.5*c-.5*a


